scikit-learn机器学习第2版:第 3章 用K-近邻算法分类和回归

目录

 第 4 章 特征提取 37
4.1 从类别变量中提取特征 37
4.2 特征标准化 38
4.3 从文本中提取特征 39
4.3.1 词袋模型 39
4.3.2 停用词过滤 42
4.3.3 词干提取和词形还原 43
4.3.4 tf-idf 权重扩展词包 45
4.3.5 空间有效特征向量化与哈希技巧 48
4.3.6 词向量 49
4.4 从图像中提取特征 52
4.4.1 从像素强度中提取特征 53
4.4.2 使用卷积神经网络激活项作为特征 54
4.5 小结 56
第 5 章 从简单线性回归到多元线性回归 58
5.1 多元线性回归 58
5.2 多项式回归 62
5.3 正则化 66
5.4 应用线性回归 67
5.4.1 探索数据 67
5.4.2 拟合和评估模型 69
5.5 梯度下降法 72
5.6 小结 76
第 6 章 从线性回归到逻辑回归 77
6.1 使用逻辑回归进行二元分类 77
6.2 垃圾邮件过滤 79
6.2.1 二元分类性能指标 81
6.2.2 准确率 82
6.2.3 精准率和召回率 83
6.2.4 计算 F1 值 84
6.2.5 ROC AUC 84
6.3 使用网格搜索微调模型 86
6.4 多类别分类 88
6.5 多标签分类和问题转换 93
6.6 小结 97
第 7 章 朴素贝叶斯 98
7.1 贝叶斯定理 98
7.2 生成模型和判别模型 100
7.3 朴素贝叶斯 100
7.4 在 scikit-learn 中使用朴素贝叶斯 102
7.5 小结 106
第 8 章 非线性分类和决策树回归 107
8.1 决策树 107
8.2 训练决策树 108
8.2.1 选择问题 109
8.2.2 基尼不纯度 116
8.3 使用 scikit-learn 类库创建决策树 117
8.4 小结 120
第 9 章 集成方法:从决策树到随机森林 121
9.1 套袋法 121
9.2 推进法 124
9.3 堆叠法 126
9.4 小结 128
第 10 章 感知机 129
10.1 感知机 129
10.1.1 激活函数 130
10.1.2 感知机学习算法 131
10.1.3 使用感知机进行二元分类 132
10.1.4 使用感知机进行文档分类 138
10.2 感知机的局限性 139
10.3 小结 140
第 11 章 从感知机到支持向量机 141
11.1 核与核技巧 141
11.2 最大间隔分类和支持向量 145
11.3 用 scikit-learn 分类字符 147
11.3.1 手写数字分类 147
11.3.2 自然图片字符分类 150
11.4 小结 152
第 12 章 从感知机到人工神经网络 153
12.1 非线性决策边界 154
12.2 前馈人工神经网络和反馈人工神经网络 155
12.3 多层感知机 155
12.4 训练多层感知机 157
12.4.1 反向传播 158
12.4.2 训练一个多层感知机逼近 XOR 函数 162
12.4.3 训练一个多层感知机分类手写数字 164
12.5 小结 165
第 13 章 K- 均值算法 166
13.1 聚类 166
13.2 K- 均值算法 168
13.2.1 局部最优值 172
13.2.2 用肘部法选择 K 值 173
13.3 评估聚类 176
13.4 图像量化 178
13.5 通过聚类学习特征 180
13.6 小结 184
第 14 章 使用主成分分析降维 185
14.1 主成分分析 185
14.1.1 方差、协方差和协方差矩阵 188
14.1.2 特征向量和特征值 190
14.1.3 进行主成分分析 192
14.2 使用 PCA 对高维数据可视化 194
14.3 使用 PCA 进行面部识别 196
14.4 小结 199

3.1 K- 近邻模型

3.2 惰性学习和非参数模型

3.3 KNN 模型分类

3.4 KNN 模型回归

3.5 小结

评论(没有评论)